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SPIROCONJUGATION INVOLVING SULFUR 3p ATOMIC ORBITALS
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Previcus work bas shown that photoelectron spectroscopy is = most useful ‘echnigue for
1-3
studyirg through-bend and through-space intersctions and for ohiaining informsiion shout
1-9
the related phenomenon of spiroconjugation, We report here photoelectron spectroscopic
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vhich elucidaie the wechanisms wheredy the sulfar 3p atomic orbitals matually intersct. Both

10,11
compounds were made according to previously specified procedures.
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mental and calculated ionization potential values are summarized in Teble I for 1 and 2, as

well as For 2, h-lboysnans 33‘)‘. otoehectrow speotre for 1 axb 2 are Snewe An Figure 2
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The ionization potentials shown in Table I reveal that the splitting between the energies

of the two highest M.0.'s is greater for _L}_ in the six-membered ring series, but for 3 in the
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TABLE I. TPhotoelectron Spectroscopic Results and Molecular Orbital Calculations

Calculated Experimental Splitting between levels
Eigenvalues (eV) Vertical I.P. of a and b symmetry
Compound HOMO's CNDO/2 Cther Expt. Calc.
2 s 11,00 6.10" 8.35 2,01 (CNDO/2)
e 10.69 6.36 8.80, 9.05 1.10
by 13.01 7.75 9.45 1.65 (ab initio
1 a 11.53 8.75
- b 11. 89 9,035 0.30 0.36
3 a 14,53 10.1 _
- b 15,20 10,65 0-55 0.67
Iy a 8.54
d b 8.5 0.41
5 a 10.1 .
- b 10.35 0.25

¥
ab initio SCF STO 3G Calculation

implies that for these two molecules a through-bond rather than a through-space interaction
dominates. This agrees with an earlier conclusion made by Turner and Sweligert on the basis of
the photoelectron spectra of 3, &} and 2912 as well as with the CNDO/E calculations given in
Table I.

We further investigated the bonding picture in i,and 3 by carrying out M.0. calculations
(see Table).:!'s Since the geometries of these two compounds are not known, we based our calcu-~
lations on a planar geometry; Turner and Sweigert also assumed an almost planar geometry.lg
The £ 3p orbitals transform as & and b type M.0.'s, The a M.0. can interact with the highest
M. 0. localized on the carbon-hydrogen bonds of the same symmetry, thus giving rise to a
splitting of the predominantly ''lone pair'' M.0.'s. In fact, the band at lower I.P. is
broader, supporting this assignment. Although the CNDO/2 calculations are not in good agree=-
ment with the measured ionization potentials, they do generate splittings between the a and b
molecular orbitals for compounds 1 and 3 that agree rather well with the experimental split-
tings, both in a relative and absolute sense (see Table). An earlier CNDO/2 calculation on 1
had assumed a 20° distortion from planarity;14 this calculation gave only a very small

splitting between the two HOMO's. Most probably then the true geometry is closer to planar

than assumed by these authors.
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Figure 1. FPhotoelectron spectra of dithiolane (1) ana 1,4,6,9-tetrathiaspirolk. 4 Inonane (2).
Spectra were obtained on a Perkin-Elmer PS-18 photoelectron spectrometer using

the He I excitation line.



3418 No. 38

Turning now ta the spectrum of 2, we note that it bears the same quaslitative relatiocnship
to the spettrum of 1 as aves ‘Tthe spectrum of J to thnev oﬁ_@.g in Yne Dojy symmetry of 7.
through-space spirointeraction of the predominantly C-C = type M.0.'s of the different rings
resultg in there being four n M.0.'s. One of these is of a, symmetry, one is of b; symmetry,

and two (a degenerate pair) are of e symmetry. The photoelectron spectrum of Z»has been
9
adequately interpreted in terms of these orbitel lewels, In 2 the € 3p orbitals gilve rise

to essentially the same type of spirocinteractions, the only difference being the non-
interacting e orbitals are predicted to be between the as and b; orbitels, rather then below
them as in 7. The e orbital should give rise to a Jahn-Teller distortion, as is evident in
the second and third bands of the spectrum of 2. While this assignment is in complete

agreement with ocur gb initic calculations {see Tabile) as well as with the magnitude of the
]
as-by splitting observed for 1 (1.2 eV), the incomplete resolution of the e and b, bands

coupled with the lack of experimental geometry for 2, makes a totally unambiguous assignment

impossible.
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